СТЕПЕНИ И КОРНИ

Мы узнали, что умножение на комплексное число, есть композиция двух преобразований плоскости: движения (поворота) и гомотетии. Это поворотная гомотетия.

При умножении двух комплексных чисел их модули перемножаются, а аргументы складываются.

Теперь поговорим о возведении в степень и о том, как извлечь корень из комплексного числа.

Пусть
$$x = a + bi$$
. Тогда $x^n = (a + bi)^n$.

Раскрыв скобки по формуле бинома Ньютона, мы получим громоздкую формулу.

А в тригонометрической форме получим гораздо более простой вид:

$$x^n = |x|^n(\cos n\varphi + i \sin n\varphi).$$

А как будет вести себя корень?

КВАДРАТНОЕ УРАВНЕНИЕ В ПОЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ

Рассмотрим уравнение $x^2 = y$.

Возведение в квадрат комплексного числа есть возведение в квадрат его модуля и удвоение его аргумента.

Исходя из того, что при возведении в квадрат аргумент комплексного числа удваивается, решение $x = \sqrt{y}$ должно лежать на биссектрисе угла φ , где $\varphi = \arg y$. Модуль числа x очевидно будет равен $|x| = \sqrt{|y|}$ — квадратный корень в обычном его понимании для вещественных чисел.

Заметим, что решений будет 2. Если мы продолжим биссектрису угла φ за начало координат и отложим на этом продолжении отрезок длиной $\sqrt{|y|}$, мы получим комплексное число -x, противоположное числу x.

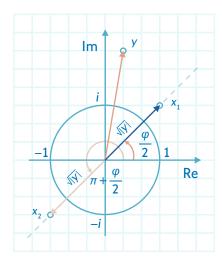
Это следует из того, что:

arg
$$y = \varphi + 2\pi k$$
, где $k \in \mathbb{Z}$.

$$\frac{1}{2}$$
 arg $y = \frac{\varphi}{2} + \pi k \Rightarrow 2$ решения: $\frac{\varphi}{2}$ и $\frac{\varphi}{2} + \pi$.

Аргумент $\frac{\varphi}{2} + \pi$ соответствует как раз числу -x.

Однозначность извлечения корня навсегда теряется при переходе к комплексным числам!



Р ПРИМЕРЫ КВАДРАТНЫХ КОРНЕЙ

Квадратные корни из чисел, лежащих на отрицательной полуоси вещественной оси, будут лежать на биссектрисе развернутого угла, а значит, на мнимой оси. Например, числа i и -i — это квадратные корни из -1.

Из числа -5 квадратными корнями будут $i\sqrt{5}$ и $-i\sqrt{5}$.

Из числа і квадратными корнями будут

$$\frac{1+i}{\sqrt{2}} \quad \mathsf{u} \quad \frac{-1-i}{\sqrt{2}}.$$

ВОПРОС

Почему нельзя назначить квадратным корнем только одно значение?

OTBET

Из соображений непрерывности функции извлечения квадратного корня, для соседних чисел значение функции должно мало отличаться. Тогда, если идти в обход плоскости, увеличивая аргумент комплексного числа, мы придем, наконец, к положительной полуоси вещественной оси с тем, что. например, $\sqrt{4}$ должен быть равен -2. Но для $\sqrt{4}$ более естественно было бы выбрать число 2.

Поэтому из любого комплексного числа $y \neq 0$ существует 2 квадратных корня, а $x^2 = 0 \implies x = 0$ — единственный корень.

КУБИЧЕСКОЕ УРАВНЕНИЕ В ПОЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ

Рассмотрим уравнение $x^3 = y$.

Очевидно корни должны иметь модуль равный кубическому корню из модуля y: $|x| = \sqrt[3]{|y|}$.

А аргументы находятся из уравнения:

$$\frac{1}{3}$$
 arg $y = \frac{\varphi}{3} + \frac{2\pi k}{3}$, где $k \in \mathbb{Z}$.

Получаем 3 различных корня:

$$x_{1} = \sqrt[3]{|y|} \left(\cos\frac{\varphi}{3} + i\sin\frac{\varphi}{3}\right);$$

$$x_{2} = \sqrt[3]{|y|} \left(\cos(\frac{\varphi}{3} + \frac{2\pi}{3}) + i\sin(\frac{\varphi}{3} + \frac{2\pi}{3})\right);$$

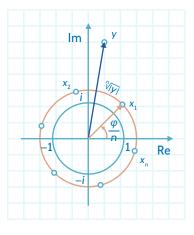
$$x_{3} = \sqrt[3]{|y|} \left(\cos(\frac{\varphi}{3} + \frac{4\pi}{3}) + i\sin(\frac{\varphi}{3} + \frac{4\pi}{3})\right).$$

Эти точки лежат в вершинах равностороннего треугольника.

ФОРМУЛА МУАВРА

Для решения уравнения $x^n = y$, где $y \in \mathbb{C}$ существует общая формула, которую легко доказать на основе того, что мы уже знаем.

Пусть
$$y = |y|(\cos \varphi + i \sin \varphi)$$
, где $\varphi = \arg y$.
Тогда $\sqrt[n]{y} -$ это множество n чисел вида: $\sqrt[n]{y} = \sqrt[n]{|y|}(\cos \psi_i + i \sin \psi_i)$, где $l = \{1, \ldots, n\}$, $\psi_i = \frac{\varphi + 2\pi l}{p}$.



Эта формула называется формулой Муавра.

В КОРНИ N-Й СТЕПЕНИ ИЗ 1

Рассмотрим корни из 1 3-й, 4-й и 7-й степеней.

1 ▶ $\sqrt[3]{1}$

Уравнение $x^3 = 1$ имеет в ℂ три решения:

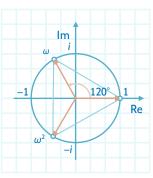
$$x_1 = 1;$$

$$x_2 = \cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = \omega;$$

$$x_3 = \cos(\frac{4\pi}{3}) + i \sin(\frac{4\pi}{3}) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i = \omega^2 = \overline{\omega}.$$

Эти числа лежат в вершинах равностороннего треугольника, вписанного в единичную окружность.

Они интересны тем, что построенная на их основе числовая система используется при доказательстве великой теоремы Ферма.



Числа ω и ω^2 называются числами **Эйзенштейна**.

2 ▶ ⁴√1

Уравнение $x^4 = 1$ порождает важнейшую систему чисел, на которой основаны гауссовы числа, которым будут посвящены несколько наших следующих уроков.

Оно имеет в $\mathbb C$ четыре решения: $\{1, i, -1, -i\}$. Эти 4 точки на единичной окружности имеют аргументы, соответственно, 0° , $\frac{\pi}{2} = 90^\circ$, $\pi = 180^\circ$ и $\frac{3\pi}{2} = 270^\circ$ и лежат в вершинах квадрата.

3 ▶ √√1

Уравнение $x^7 = 1$ имеет 7 корней, которые являются вершинами правильного семиугольника, вписанного в единичную окружность.

Обозначим χ комплексное число, лежащее на единичной окружности и имеющее аргумент

$$\varphi = \frac{2\pi}{7}$$
.

В тригонометрической форме $\chi = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$.

Тогда все корни уравнения

$$x^7 = 1$$
 будут степенями числа χ : $1 = \chi^0, \chi, \chi^2, ..., \chi^6$.

УТВЕРЖДЕНИЕ

Выполнено следующее равенство:

$$x^7 - 1 = (x - 1)(x - \chi)(x - \chi^2) \dots$$

(x - χ^6).

Мы вернемся к этому равенству, когда будем изучать многочлены.

